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A charged particle suspended in an electrolyte solution attracts ions of opposite 
charge and repels those of like charge. The surface charge and the resulting distri- 
buted charge in the fluid comprise an electrical double layer. When a shear flow 
deforms the diffuse part of the double layer from equilibrium, stresses are generated 
which make the effective viscosity of the suspension greater than it would be if 
there were no charges present. I n  this paper these stresses are calculated for a dilute 
dispersion of spheres which have small surface charges and which are surrounded by 
thin double layers. The viscosity is predicted to be Newtonian in extensional flow 
but shear-thinning with non-zero normal-stress differences in shear flow. For more 
complex flows a constitutive equation couples the bulk stress directly to the micro- 
structural deformation responsible for non-Newtonian effects. 

1. Introduction 
Suspensions of small charged spheres are more viscous than similar suspensions of 

uncharged spheres and more strikingly non-Newtonian. The physics has been qualita- 
tively explained for many years in terms of the ‘primary’ and ‘secondary’ electro- 
viscous effects (Conway & Dobry-Duclaux 1960). The secondary effect is the result of 
interparticle repulsions; this has been shown experimentally (Stone-Masui & Watillon 
1968) and theoretically (Russel 1976, 1978) for dilute concentrations of particles for 
which pair interactions dominate. The primary effect arises from the deformation by 
a shear flow of the diffuse ion cloud attracted to the charged surface of a single particle 
and hence is linear in the volume fraction of particles $. In  the absence of flow the ions 
distribute themselves so that the Brownian and electrostatic forces balance, producing 
a Boltzmann distribution. I n  a shear flow, convection relative to this equilibrium 
configuration is resisted by the thermal and electrostatic forces, generating body 
forces in the fluid which translate into additional bulk stresses for the macroscopic 
suspension. 

The first theory for the primary electroviscous effect was presented without proof 
for the limiting case of thin double layers by Smoluchowski (1916). Later Krasny- 
Ergen (1936) calculated the viscous dissipation in the same limit to obtain a result 
similar to Smoluchowski’s but differing from it by a numerical factor. Booth ( 1  950), on 
the other hand, performed a definitive analysis in the low shear limit for arbi- 
trary double-layer thickness, obtaining a Newtonian viscosity with an O( q5) coeffi- 
cient which increased with increasing surface charge and double-layer thickness. The 
predicted enhancement of the coefficient over the Einstein value of 2-5 is generally of 
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the same magnitude as or smaller than 2.5 and hence is difficult to measure accurately; 
nevertheless, Stone-Masui & Watillon’s (1  968) experiments with polystyrene latexes 
show similar effects. 

Since the rheology of colloidal suspensions is complex and quite sensitive to their 
electrochemical state, we have analysed the primary electroviscous effect as one 
source of non-Newtonian behaviour by extending the classical theories mentioned 
above to higher flow strengths. In  the following sections we first present the full 
equations governing electrokinetic phenomena and discuss their limitations before 
taking those limits appropriate for thin double layers. Bulk stresses and a constitutive 
equation are then derived from the general form of the body force distribution pro- 
duced by the double-layer deformation. A dilute suspension is predicted to be 
Newtonian in extensional flow to the current order of approximation but shear- 
thinning with non-zero normal-stress differences in shear flow, reflecting the critical 
role of vorticity in reducing deformation at a given strain rate. For more general flows 
the constitutive equation can be presented as either a pair, illustrating the direct 
coupling between bulk stress and microstructure, or a single equation of a standard 
phenomenological form. 

2. Governing equations 

the diffuse charge cloud incorporate three basic assumptions: 

stant independent of ion concentration and electric field strength. 

charges affected only by electrostatic, thermal and viscous forces. 

The equations describing the dynamics of and the conservation of the ions within 

(1) Fluid properties such as the viscosity ,uo and dielectric constant E remain con- 

(2) The ions of species k with valence zk and number density nk behave as point 

(3) Inertia can be neglected owing to the small size of the particles. 
The velocity field u and the pressure p must then satisfy the incompressibility 

condition 
v.u = 0,  (1)  

and the Stokes equation with an electrostatic body force 

V p i p V $  = pov2u, 

where $ is the electrostatic potential and 

p = eCzknk 
k 

is the local charge density, e being the electronic charge. The boundary conditions 
for a sphere of radius a require the fluid at its surface to rotate with it, 

u = w x x  at r = a ,  

and the fluid velocity must tend to an undisturbed linear flow far away from the 
sphere, 

u=rFZxx+E.x as r + q  
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where 2 Q  is the vorticity and E the symmetric rate-of-strain tensor. When inertia is 
negligible, an angular momentum balance on the sphere determines its spin o to be 
half the free-stream vorticity, i.e. o = G?. 

The electrostatic potential is related to the charge density by Poisson's equation 

V2$ = - p / e .  (3) 

The appropriate boundary conditions for an insulating particle suspended in an 
electrolyte solution are continuity of the potential 

$ = $ *  a t  r = a ,  (4) 

and a specified constant surface charge density qo, 

n.  (eV@ - e*V$*) = - qo, (5) 

at r = a ,  while 4 -+ 0 as r + 00. The * denotes values within the particle and n the unit 
normal to the surface. In  the condition ( 5 )  the internal field can be neglected for 
aqueous systems since e*/e < I .  

The ion concentrations nk are governed by the conservation equations 

ank/at + V . (vknk) = 0,  

v k  = u + wk( - e z l T $  - kTC In n"), 

(6) 

where vk, the velocity of the kth species, is given by a dynamical equation 

(7) 

in which wk is the mobility of the ion and k T  the Boltzmann temperature. The 
dynaniical equation ( 7 )  says that the ions slip relative to the flow u owing to the 
electrical force - ezkC$ and the entropic force - kTVlnnk (which drives diffusion). 
The boundary conditions on the ion concentrations are that there is no flux of ions 
into the particle, 

and that there is a constant neutral electrolyte solution far from the particle, 

n . v k =  0 at r = a ,  (8 )  

wit h 
(9) 

At high ionic strengths the above model breaks down near the particle surface 
owing to the formation of a compact Stern layer of adsorbed ions, invalidating the 
first two basic assumptions. This layer, however, appears to  be insignificant dynami- 
cally. A detailed analysis of it can be avoided by lumping the adsorbed ions into the 
surface charge and applying the electrical boundary conditions a t  a no-slip level r = a. 

Tiliithout flow the ion conservation equations integrate to Boltzmann distribut,ions 

nk = nf exp { - ezk+/kT), 

V%,k = - ( e / e )  C zkng exp { - ezk+/kT) 

(10) 

from which the Poisson-Boltzmann equation 

('1) 
k 
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for the potential within the equilibrium double layer folIows from t,he Poisson equa- 
tion. Knowing (10) allows one to integrate the momentum equation to determine 
the local osmotic pressure due to the thermal motion of the ions 

which leads to an isotropic bulk pressure of no dynamic significance in an incom- 
pressible medium. If, however, a shear flow disturbs the equilibrium double layer the 
altered potential and ion densities create body forces which do generate deviatoric 
stresses opposing the applied flow and increasing the apparent viscosity above its 
value for uncharged spheres. 

In  most studies of dynamical phenomena, the Poisson-Boltzmann equation is 
simplified by assuming, as we do here, that t.he potentials are small: 

In  practice this means restricting attention to surface potentials less than 25 mV. With 
this assumption the Poisson-Boltzmann equation becomes 

v2$ = K2$, 

where 
K~ = (e2/ekT) C (zk),"n$. 

k 

The spherically symmetric solution is 

$ = a2q0e4-a) / e ( i + a 4 r ,  (15) 

demonstrating that the charge cloud shields the surface charge on the Debye-Hiiekel 
length K-1. In this paper we shall assume the charge cloud to be thin relative to the 
sphere radius, i.e. 

aKB 1, (16) 

a condition frequently satisfied for aqueous suspensions with a 2 0.1 pm. 
In the ion conservation equation (6),  the linearization (13) corresponds to multi- 

plying the electric force term in v k  by n$ rather than nk. With the additional assump- 
tion that all ion mobilities are equal, i.e. wk = w for all k, the ion conservation equations 
can be summed to produce a single equation for the total electric charge : 

@/at + V. (pu) = wkT(V2p - ~ 2 p ) .  (17) 

The boundary conditions follow from (8) and (9) : 

andp+O as r+m. 

vection with diffusion, the PBclet number 

n.  (u - w k T ( e ~ ~ V $  - V p ) )  = 0 a t  r = a, (18) 

The charge equation contains an important dimensionless group comparing con- 

Pe = y/K2wkT (19) 

with y the magnitude of SL and E. Note that for thin double layers (16) the appropriate 
length scale is K - ~  rather than the radius a. Actually, as shown in the next section, the 
charge cloud only distorts by O(Pe/aK) because the normal component of the fluid 
velocity, which is responsible, is O(y/aK2), not O ( ~ / K ) ,  within the charge cloud. 
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One further assumption is needed: the electrical body force in (2) must not greatly 
affect the flow. While this term is O ( @ ; ~ K ~ )  for the equilibrium double layer, it  is 
precisely balanced by the gradient in the osmotic pressure ( 1  2 ) .  Only the O(Pe/aK) 
distortion of the charge cloud leads to a modification of the flow. Then from (2) the 
shear within trhe double layer is altered by O(yHa),  where Ha is the dimensionless group 

Ha = (aK)-lE@z/pOOlkT. (20) 

Thus for small H a  the Stokes equation for viscous flow without an electrical body 
force pertains. Note that of the four independent dimensionless groups, e@,/lcT, l / a ~ ,  
Ha and Pe, the first three are assumed small here. 

3. The deformed charge cloud 
For Ha < 1 the first approximation for the flow is found by solving (1) and ( 2 )  

(without the electrostatic force) with the appropriate boundary conditions and with 
w = 51; we obtain 

u = Q x x + E . x  

For a K  3 1 the velocity within the charge cloud can be expanded using the boundary- 
layer variable 

T,I = K ( r - a )  - O(l) ,  
so that 

x = n( 1 + y/aK) a, 
and 

+ O  (.. E (-3II). (22) 
15 2 x.E.x +-( 2 a K  )"-.i- 

To first order the fluid merely rotates as a solid body with half the free-stream 
vorticity. At higher order the straining motion creates tangential and normal velocities 
which increase linearly and quadratically, respectively, with distance from the surface. 
This variation can be understood by noting that the no-slip boundary condition 
requires that both velocities vanish on the surface. The incompressibility condition 
then dictates that the normal derivative of the normal velocity also vanishes at  the 
surface leaving a quadratic variation with 7. 

The charge cloud associated with the equilibrium potential (15) can be calculated 
from the Poisson equation (3) as 

pe = eK2$0(a/T) e-"@-a). (23) 

Owing to its spherical symmetry, solid-body rotation has no effect on (23) and it 
satisfies the charge equation (1  7 )  for purely vortical flows of arbitrary strength. Since 
the straining motion, which does cause deformation, is an order of magnitude (in l / a ~ )  
weaker than the rotation, the equilibrium distribution (23) will be only slightly per- 
turbed. Thus 

p = pe+ P ' I U K ,  (24 )  
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where the distortion pi must satisfy 

ap'/at+SZ x x . V p ' - ~ ~ ~ k T ( a ~ p ' / a r ~ - p ' )  = A&s$oa~3q2e-T~ .  E.xlr2.  (25) 

The boundary-layer approximation has simplified the left-hand side of (25) by reducing 
the Laplacian to P/ay2, while curvature has been neglected on the right-hand side in 
the deformation of the equilibrium double layer by the straining motion. Corrections 
to both are O( I / a K )  smaller t'han the terms retained. The boundary conditions follow 
directly from (1  8) : 

+'/a7 = O  at 7 = O  and p'+O as 7-+00. 

The solution to (25) has a second-harmonic form 

p' = ~ ~ ~ $ ~ X . A ( ? j , t ) . x / r ~ ,  

aA/at +A x SZ - SZ x A - K2WkT(a2A/aq2 -A)  = 2 E72 e-T, 

where 

with 
aA/ay=O at r = O  and A+O as y+co. 

In  a steady pure straining motion, i.e. one in which 8 = 0, the solution is 

A = +k(~~~kT)-1(&3+72+7+ 1)e-vE. (28) 

The deformation remains of second order as required provided PelaK 
the theory to flows which are weak in some sense. 

1, limiting 

In steady simple shear flow 
u, = yz2,  u2 = u3 = 0. 

The solutions are 

A,, = A,, = Y-(Pe)- le-T(l-  27) + 21m (ce"?), 

A,, = -A22 = 30(Pe)-2e-T(l-QPe272)+2Re(ceav)), 
where 

(29) 

15 4+3Pe2- iPe  
1 + Pe2 

a = (1+iPe)3, c = - 
4 ~ e 2  

and Re and Im denote the real and imaginary parts, respectively. In  this case of 
shear flow with a K  9 1 ,  the deformation is small for all flow strengths because the 
vorticity rotates the charge cloud rapidly from the stretching quadrant to the com- 
pressional quadrant. The cloud thus feels in quick succession phases of stretching and 
compression with neither phase lasting sufficiently long to produce significant distor- 
tion. The same phenomena would occur in any flow with the straining motion only 
in the plane orthogonal to the vorticity. Liquid drops exhibit an analogous behaviour 
(Cox 1969); droplets with a viscosity much larger than that of the suspending fluid 
also rotate almost rigidly with half the vorticity, resulting in little overall deformation 
in a simple shear flow. 

From the charge-cloud distortion we can now calculate the perturbation in the 
electrostatic potential from the Poisson equation ( 3 )  with the boundary conditions (4) 
and (5). Outside the thin double layer, the deformation appears as a surface distribution 
of charge 
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This produces an unshielded quadrupole potential 

$‘ = ~ $ o a ~ ~ ~ . ~ o w A d ~ , ~ / l J  (30) 

which dominates the exponentially decaying equilibrium potential in the far field. 
Within the charge cloud, i.e. for 7 N O(l),  the perturbation potential has the form 

$‘ = $ox. B(7, t )  . x/r2, 

PB/872 = - A  and aB/i?q = 0 a t  7 = 0. 
where 

Hence 

where the constant tensor C is determined by matching with the outer solution (30) 
as n --+ 00. As a result 

J O  with errors of O ( l / a ~ ) .  
The electric field outside the charge cloud follows from (30) as 

Within the double layer the normal and tangential components of the field are of the 
same order of magnitude in l / a K  with the tangential component remaining constant a t  

I n  the next section we show that under these conditions only the tangential component 
contributes to the bulk stress. 

I n  addition to the single-particle primary electroviscous effect, the rheology of 
colloidal suspensions depends on electrostatic interactions between particles. Recent 
calculations of the secondary electroviscous effect for stable suspensions (Russel 1976) 
and orthokinetic flocculation of unstable or marginally stable systems (Curtis & 
Hocking 1970; Zeichner & Schowalter 1977; van de Ven & Ma,son 1976) have relied on 
electrostatic force laws derived from equilibrium-double-layer theories (Pe = 0). Since 
the electrical quadrupole produces a longer-range repulsive force than does the thin- 
double-layer field, a brief estimate of its magnitude will be present,ed. From a far-field 
approximation 

electrical force N particle charge x electric field, 

the quadrupole force between two spheres with equal charge at separation r and 
orientation x / r  in a pure straining flow is 

x . E . x s ~ & ~ y  a 
15--- 

r2 wkT a((;) 

Note that the force is repulsive as the spheres approach but attractive as they separate. 
Without hydrodynamic interactions the opposing viscous force between the two 
spheres is 

6np0ayx. E . X / T ,  (37) 
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FIQURE 1. Plot of O(4)  coefficient of reduced-shear viscosity normalized by its zero-shear value v8. 
thedimensionlessshearrate.---, theoreticrtlcurve,equation (54); , dataofChan &Goring (1966). 

so that 
electrical force 5 1 a5 
viscous force 2npowkT a~ r5 a 

=---- 

For moderately charged aqueous suspensions (6 - 80, @o - 50 mV, ,uo - poise, 
wkT - 10-5 cm2/s, UK - 10)  the ratio in (38) is - 2 ( ~ / r ) ~ ,  indicating that the quadru- 
pole force is negligible under ordinary circumstances. 

4. The bulk stress 
Following Batchelor (1970) we can now calculate the bulk stress Z by averaging 

the local stress field within a volume V chosen large enough to contain many particles 
but small enough for bulk quantities to remain constant. For electroviscous problems, 
Russel (1976) has noted that the appropriate bulk stress is the sum of the viscous stress 
and the Maxwell stress, the latter being defined by 

m = E(V@V@ - $IT$. V@), 
i.e. the bulk stress is 

Z = -  (a+m)dv. (39) t SV 
The contribution from the homogeneous fluid can be separated from that of the 

particle as 

where the particle stress is 
C = -p l+2 ,~oE+Cp,  (40) 

(41) 
~ ~ = ~ S y ( = + m + p l - 2 p ~ e ) d ~  1 

and the viscous terms cancel outside the particle. A more convenient form can be 
obtained by using 

a + m  = V.((a+m).x) -xV.(a+m) and m = V.(m.x) - xV.m; (42) 
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the last term in the first equation is zero in the absence of inertia from thc momentum 
equation, while - xV. m = xF, where F is the body force on the fluid. With these 
identities and the divergence theorem we obtain from (41) 

where the An are the surfaces of the N individual particles and A encloses the control 
volume. The isotropic pressure has been discarded as irrelevant to the dynamics of an 
incompressible fluid and the last term in (41) has integrated to zero for a rigid particle. 
If the surface A is chosen to avoid all particles by the mean separation a/$*, the last 
integral in (43) can also be neglected to O(4)  because the unshielded quadrupole poten- 
tial, which decays as l / r 3 ,  contributes at  most a term O($Q).  Thus there remain only 
the weighted integral of the viscous traction over the surface of each particle, which 
Batchelor (1972) identifies as the stresslet S, and the moment of the electrostatic body 
force integrated over the fluid. 

In  the preceding section the velocity field was decomposed into that due to Stokes 
flow around a rigid sphere and that induced by the deformed double layer. The former 
generates Einstein’s well-known result 5p04E through the first term in (43). Rather 
than calculate the latter velocity field, we can determine the particle stress directly 
from the distribution of body forces F. Batchelor (1972) has recently derived the 
stresslet induced in a rigid sphere by an imposed flow (i.e. in the absence of the sphere) 
as 

S = 2+na3p0(e +&a2V2e),,, (44) 

where x = 0 corresponds to the sphere centre. Since a point force at  position x in an 
infinite fluid generates the velocity 

u = (8n,~,)-~ F. r-l( I + xx/r2), (45) 

at the origin, the resultant stresslet follows after some algebra. For body forces 
distributed only within a thin double layer, the stresslet reduces to 

(46) 

plus terms O(l/aK) smaller. The complete viscous stress for a volume V containing 
N identical spheres each having volume V, can now be found as N/V times the 
integral of S over the double layer around an isolated sphere. Before evaluating 
this integral let us examine the Maxwell stress, which has a form very similar to S. 

The symmetric form of the second integrand in (43), without the isotropic pressure, is 

S = +(x. FI - $(xF + Fx) +y-T/aK(xF + Fx - 2x. Fxx/r2)} 

&(xF + FX - #x. FI). 

This must also be multiplied by N / V  and integrated over the volume external to 
a single sphere, so we can add it directly to (46) to obtain the following simplified 
particle stress: 

Note that normal forces of the same magnitude as tangential forces do not contribute 
to leading order. 
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The electrostatic body force 
F = -pV$ (48) 

within the equilibrium double layer generates an isotropic bulk pressure which can be 
ignored here. The first dynamically significant term arises from the interaction between 
the perturbed electric field and the equilibrium charge distribution. Since the field has 
normal and tangential components of the same order of magnitude, only the former 
need be retained here, giving 

Equation (50) shows that the bulk stress does not depend on the details of the 

cloud charge distortion, but on the single integral A dy  . The constitutive equations 

can thus be completed by finding an equation for this single quantity by integrating 
the charge equation (27 )  with respect to y and using the boundary conditions on A to 
obtain 

som 
( g + m 2 k T ) J o m A d q  = - 1 5 E ,  

where 

is the corotational derivative. The constitutive equations thus can be presented as the 
pair (50)  and (51 ) ,  in a form suggested by Hinch & Leal (1975).  The particular form of 
the time derivative reflects the fact that to a first approximation the charge cloud 
rotates with the rigid sphere as a solid body with an angular velocity equal to half the 
vortieity . 

q93t = a/at+Uv +v  x u x + (v x u x 

It is also possible to eliminate A d y  by combining (50)  and (51 )  to obtain the result 1: 

which is the Jeffery/Oldroyd equation. 
Now the viscosity in the zero-shear limit 

p/po = 1 +$${I + 6 q & ( a ~ ) - ~ / p ~ u k T }  (53) 

agrees with both Krasny-Ergen’s theory and the aK -+ co limit of Booth’s. A t  higher 
shear rates a shear-thinning viscosity 

- -  lu - 1 + & $  44 1 + 6 - - -  1 
PO ( powkT ( a K ) 2  1 + Pe2 

and normal-stress differences 

(54) 

e$i Pe2 
NI = Xll-E22 = 30-4- a2 I+Pe2’ N2 = E33- E22 = - QN, (55) 

are predicted. 
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The magnitude of the perturbation of Einstein's results described by (53) results 
from the integration of the deviatoric part of the Maxwell stress, O(Ha) ,  over the 
volume fraction of the charge cloud, O($/aK). Hence the effect is O($Ha/aK), which 
has been restricted to be small in this theory. 

Unfortunately, the literature contains no definitive measurements on the shear-rate 
dependence of the primary electroviscous effect. Stone-Masui & Watillon (1968) care- 
fully restricted their experiments with monodisperse polyst,yrene latexes to the low 
shear limit. Chan & Goring (1  006) observed shear-thinning with different latexes but 
inconsistencies in their data indicate that their particles may have been swollen and 
deformable. For example, a t  high ionic strengths when the electrical effect should 
be small, their O(0)  coefficient based on the dry particle size was about 5 rather 
than 2.5. Also as shown in the plot of their data in figure 1 (with A the O(q5) 
coefficient and A, = lim A),  the shear-thinning occurred at  Pe < 10-1 and could be 

within the experimental uncertainty. The small magnitude of the effect and the high 
shear rates required pose forniidable problems for their experimental observation. 

The non-Newtonian behaviour characterized by ( 5 2 )  derives from the effect of 
vorticity on the unshielded qnadrupole. In  simple shear with vorticity in fixed ratio to 
straining, the quadrupole aligns with the principal direction of straining at low shear 
rates bnt rotates toward the no-flow axis a t  higher rates. As with drops having high 
internal viscosities this reduces the effectiveness of the flow, allowing the magnitude 
of the deformation to achieve a constant asymptote. As a consequence the shear 
viscosity decreases but the normal stresses become unbalanced. Conversely, for 
uniform straining the quadrupole remains oriented with the principal directions and 
increases in magnitude monotonically with increasing flow strength. The constant 
viscosity is, however, an artifact of truncating the expansion in powers of i /aK; in 
fact, the expansion breaks down when Pe > a K .  
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